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We study a general tensor product for two collections of related physical
operations or observations. This is a free product, subject only to the condition
that the operations in the first collection fail to have any influence on the statistics
of operations in the second collection and vice versa. In the finite-dimensional
case, it is shown that the vector space generated by the probability weights on
the general tensor product is the algebraic tensor product of the vector spaces
generated by the probability weights on the components. The relationship
between the general tensor product and the tensor product of Hilbert spaces is
examined in the light of this result. )

1. BACKGROUND

According to von Neumann, a quantum mechanical system & is rep-
resented by a complex, separable Hilbert space # in such a way that
observables on & correspond to self-adjoint operators on ¥, and states on
& are represented by density operators (positive, self-adjoint, trace-class
operators with trace 1) on # If A is the self-adjoint operator on #
corresponding to the observable O on &, if M — P, is the spectral measure
for A, and if W is the density operator representing the state of ¥, then
the probability that a measurement of 0 will yield a numerical result in the
Borel set M =R is given by trace( WP,,). This suggests that, in general, a
projection operator P (self-adjoint idempotent) on # can be regarded as
a yes/no proposition about & in such a way that the probability in state
W that the answer to P is “‘yes” is given by trace( WP) (von Neumann,
1955, p. 247; Birkhoff and von Neumann, 1936).

The set L(%) of all projection operators P on 3 forms a complete
orthomodular lattice (Kalmbach, 1983). Since the projection operators
Pe L(3) can be regarded as yes/no propositions about %, it is natural to
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refer to the orthomodular lattice L(J) as the “logic” of & (Birkhoff and
von Neumann, 1936). Each density operator W on ¥ induces a probability
measure wy: L(#)—>[0,1]< R such that

ww(P) =trace( WP) forall PeL(¥)

By a celebrated theorem of Gleason (1957), if dim(J) = 3, then the mapping
W uy is a bijection from the set W () of all density operators on #
onto the set of all probability measures on L(). The convex set W ()
forms a cone base for its linear span, the base-norm space ¥(3) of all
self-adjoint trace-class operators on #, and the base norm on ¥(%)
coincides with the trace norm (Riittimann, 1985b). Each element A € ¥(#)
induces a (signed) measure p4: L()— R such that

pa(P) =trace( WP) for all Pe L(¥)

A normalized vector ¢ in  determines a projection operator P,
according to the formula

Py(¢)=(d, P forall e

(We use the mathematician’s convention that the inner product is conjugate
linear in its second argument.) Thus, a maximal orthonormal set E of vectors
in % determines a maximal orthonormal set {P¢|¢e E} of propositions in
L(%), and therefore can be construed as representing a maximal observation
in the sense of Dirac (1930; Foulis and Randall, 1985).

When two quantum mechanical systems &, and ¥,, represented by
Hilbert spaces #, and %,, are “coupled” to form a composite system
&+ &,, it has been supposed that the Hilbert space representing &, + %,
ought to be the Hilbert-space tensor product #,® 3, (Jauch, 1968). [In
spite of the fact that Schrodinger was in part responsible for this representa-
tion, he was uneasy about some of its consequences (Schrédinger, 1935,
1936).] In the tensor product representation, the states for &, + %, corre-
spond to density operators W e W (¥, ® %,). For such a W, the reduced
states, or marginals, W, e W (5,) and W,e W (3,) affiliated with the com-
ponent systems &, and &, are uniquely determined by the conditions

trace( W, P) =trace[ W(P®1)]
trace( W, Q) =trace[ W(1® Q)]
for all Pe L{%,) and all Q€ L(3,).
Now suppose that the system &;+%, is represented by the Hilbert
space #,® %,. If E is a maximal orthogonal set of vectors in 7, we can

define the conditional probability of Q<€ L(3,) in state W, given that the
maximal observation E was made on &, to be

shw(Q) = d’ZE tracel W(P, ® Q)]
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In the sense of Dirac (1930, p. 13), we say that the system &, has no influence
on the system ¥, if, for every state We W' (3, ® ¥,), the conditional prob-
ability measure guyw on L(3,) is independent of the choice of the maximal
observation E on #,. However, it is easy to see that

ew(Q) =trace( W,Q)

is automatically independent of the choice of E; hence, if ¥, + %, is represen-
ted by the tensor product #,® ¥,, then &, has no influence on &,. Likewise,
&, has no influence on ¥, . This is a feature of the tensor product representa-
tion of coupled systems that is often overlooked by those who study the
mathematical foundations of quantum mechanics: The representation of
coupled systems by the Hilbert-space tensor product allows only correlations
between the systems—there can be no influence of one system upon the other!

If 3, and &, are finite-dimensional, a simple dimension argument
shows that there is a natural vector-space isomorphism

V(%)@Y (3,) =V (%, ,)

A general tensor product for two collections of related physical operations
or observations was introduced in Foulis and Randall (1980) and Randall
and Foulis (1980). This general tensor product is a “free product,” subject
only to the condition that the operations in the first collection fail to have
any influence (in the sense of Dirac) on the statistics of operations in the
second collection and vice versa. The main theorem of the present paper
is an extension of the isomorphism above to this generalized tensor product.

In order to set the stage for the subsequent developments, we consider
a separable Hilbert space # over either of the fields R or C. We define of
to be the set of all maximal orthonormal sets of vectors E, in %, and we
think of such an E as a maximal observation in the sense indicated above.
Then X =|J{E|E ¢ o/} is the unit sphere in %, and the probability measures
w on the projection lattice L() are in a natural bijective correspondence
w— o with the mappings w: X > [0, 1] <R satisfying the condition

Y w(y)=1 forall Eed

yeE
in such a way that, for all € X, w(y) =pu(P,). (If E is infinite, the sum
is understood in the sense of unordered summability.) Such a mapping
is called a probability weight on .

Denote by (/) the convex subset of the real vector space R* consist-
ing of all of the probability weights w on & The linear span of Q(sf) in
R™ forms a base-norm space V() with (/) as cone base (Cook, 1985).
If dim(%) =3, then the correspondence

A= ps=p—w
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establishes an affine isomorphism of ¥'(¥) onto (), and this isomorph-
ism has a unique extension to a linear isomorphism

V()= V()

Thus, the set of sets &, divested of all the remaining structure of the Hilbert
space &, serves as a carrier of the measures on L(¥) induced by the
self-adjoint trace-class operators on .

2. PROBABILITY WEIGHTS

In the following definitions, we generalize the ideas introduced at the
end of the last section. We begin by considering an arbitrary nonempty set
A of nonempty sets

#={E,F,G,..}

Such a set of sets, with or without additional requirements, has been called
a space (Greechie and Miller, 1970), a hypergraph (Gudder et al., 1987), or
a cover space (Gudder, 1986). In the operational approach to the mathemati-
cal foundations of quantum mechanics, such an & (subject to suitable
regularity conditions) is regarded as representing a catalogue, or manual,
of operations or experiments (Randall and Foulis, 1973, 1978, 1985; Foulis
et al., 1983). This brings us to the following definition:

Definition 2.1. A quasimanual is a nonempty set &/ of nonempty sets
satisfying the condition that

E, Fed with Ec F=>E=F

If of is a quasimanual, we use the notation | & for the union of all of the
sets in &, so that

U o =\ U{E|E € st}

The set & of all maximal orthonormal subsets of a Hilbert space #
may be regarded as one of the prototypical examples of a quasimanual. In
this case, | &¢ is the unit sphere in % Another important example is
obtained as follows: Let § be a nonempty set, let # be a o-field of subsets
of S, and consider the Borel space (S, #). Then B(S, M), the set of all
countable partitions of S into nonempty disjoint sets in /, is a quasimanual
and U B(S, M) = M\{T}.

Definition 2.2 Let of be a quasimanual with X =) &. A probability
weight on o is a mapping w: X - [0,1]< R such that

Y w(x)=1 forall Eec .«

xeE
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We denote by Q() the set of all probability weights on . For w € Q(),
we define the support of w, in symbols supp(w), by supp(w)=
{xe X|o(x)#0}. If Ac E € of and w € Q(sf), we define

w(A)= ¥ o(x)

xeA
The linear span of Q(sf) in the real vector space R* is denoted by V().

For a Borel space (S, #), we observe that V(Z&B(S, #)) is naturally
isomorphic to the space of all (signed) measures of bounded variation on
(S, M) in such a way that Q(%B(S, #)) corresponds to the space of all
probability measures on (S, ).

Theorem 2.3. If o is a quasimanual and Q(.«f) # &, then (V(f), (L))
is a base-norm space and, under the base norm, V(&) is a Banach space.

Proof. Cook (1985).

In what follows, V(&)* denotes the Banach dual of V(sf) and ee
V(#)* denotes the dual order unit. Note that, for any E ¢ o/ and any
ve V(A), we have

e(v)= Y v(x)
xeE

Definition 2.4. Let o be a quasimanual such that Q() # & and let
X ={J o. For each xe€ X, define the frequency functional f.c V(s)* by
f:(v)=v(x) for all ve V(). A subset B of X is said to be of-basic if
{f:lxe B} u{e} is a total subset of V(s£)*,

Note that each frequency functional f, belongs to the dual order interval
[0, e]; hence, it is a counter in the sense of Riittimann (1985a). If V(sf) is
finite-dimensional and B is an of-basic subset of X =|_J </, then we have

dim(V(«)) =dim(V()*)<#B+1

where we denote by # B the cardinal number of the set B. The following
lemma is a consequence of the fact that, for o, v€ Q(«), we have w — v e
ker(e).

Lemma 2.5. Let o/ be a quasimanual such that Q(«)# & and let
Bc X =\ A. Then B is &-basicif and only if, for w, n € U ), w|p = n|p=>

w=1.

Notation 2.6. In what follows, we use the notation xy for the ordered
pair (x, y). Likewise, Ey denotes the set of all ordered pairs (x, y) with
x € E, xF denotes the set of all ordered pairs (x, y) with ye F, and EF
denotes the set of all ordered pairs (x, y) with xe E and ye F.
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For the remainder of this section, we assume that & and B are
quasimanuals with X =\ of and Y= 3.

Definition 2.7. We define the Cartesian product A XRB of the
quasimanuals &/ and % by o/ x B={EF|E e &, Fe B}. If 0 e (A X RB),
E e o, and Fe &, we define zw e Q(B) and wr € Q(A) by pw(y)=w(Ey)
for all ye Y and wp(x)=w(xF) for all xe X.

Note that XY = (& x B).

Definition 2.8. If o € QA x RB), then we say that o exhibits no influence
of A on B if gweQ(R) is independent of the choice of E € . Likewise,
we say that w exhibits no influence of B on A if wp € Q) is independent
of the choice of Fe .

By adjoining subsets of X = J & to a quasimanual & in such a way
as to preserve the condition in Definition 2.1, we obtain a larger quasimanual
o' with X = #£'. Obviously, Q(s¢') < Q(sf). Thus, the passage from £
to a larger &' (with the same union X) can be regarded as one means for
imposing a condition on the probability weights w € Q(f), i.e., w satisfies
the condition in question if and only if @ belongs to the smaller set Q(sf").
In the next definition, we introduce an enlargement of &/ X & that has the
effect of imposing the condition that 9 has no influence on & (see Theorem
2.10).

Definition 2.9. We define the forward operational product A% of the
quasimanuals & and % by

&f%‘={ U xF.|E e f and F, € B for every x€ E}
xeE

Note that o x B < J% and XY = (o x B) =) #%. Therefore, the
passage from the Cartesian product to the forward operational product can
be regarded as imposing a condition on the probability weights in Q(f x &).
The following theorem shows just what this condition is.

Theorem 2.10. If w e QA x RB), then we Q(H%A) if and only if w
exhibits no influence of % on .

Proof. Randall and Foulis (1980).

The arrow in the notation <% is supposed to indicate the direction of
influence (if any) from of to %. By reversing all ordered pairs in the definition
of the forward operational product, we obtain the backward operational
product, in which the influence (if any) is from % to .

Definition 2.11. Define the ‘“‘switching mapping” m: YX > XY by
7(yx)=xy for xe X, y € Y. Then, the backward operational product 4B is
defined by A%B = {7 (G)|G € B}
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Corollary 2.12. If weQ(sfxB), then o € Q(ARB) if and only if w
exhibits no influence of .« on %.

Proof. Randall and Foulis (1980).

In what follows, we denote generic probability weights on /% and
AR by & and w, respectively. As a consequence of Theorem 2.10 and
Corollary 2.12, we can make the following definition.

Definition 2.13. Let & € Q(4%) and & € Q(#4B). Define the reduced,
or marginal, weights &g € () and 40 € Q(B) by dg = op for any Fe B
and & = ;& for any E € . For x € supp(dg), define ,é: Y->R by ,o(y) =
@(xy)/dg(x) for all y € Y. Likewise, for y € supp(4@), define @,: X >R by
w,(x) = w(xy)/ 4o (y) for all xe X.

We omit the straightforward proof of the following lemma:

Lemma 2.14. Let ¢ € Q(#4%) and & € Q(HA%). Let xe X and ye Y.
Then & € (RB) and, likewise, &, € (). Furthermore, if &g5(x) =0, then
@(xy)=0 for all ye Y, and, if 4o(y)=0, then &{xy)=0 for all xe X.

The probability weights & and @, in Lemma 2.14 are referred to as
@ preconditioned by x and @ postconditioned by y, respectively. With the
notation of Lemma 2.14, we have for every x € X and every ye Y,

Lo [Pa(x)@(y)  if x esupp(dg)
@(xy) = . -
0 if x Zsupp(wg)
Of course, a similar formula holds for &(xy). These formulas can be used
in reverse to obtain arbitrary probability weights on the forward and back-

ward operational products. The technique is shown in the following theorem,
the proof of which is straightforward.

Theorem 2.15. Let w € Q(sf) and, for every x € supp(w), let . € Q(%B).
Define ¢: XY ~»[0,1]=R for xye XY by
. w(x),w if xesupp(ew
w(xy)={ ()w0ly) i pp(w)
0 if x¢&supp(w)
Then & € O(4%). Likewise, let 7€ Q(B) and, for every yesupp(n), let
1, € (). Define 7: XY »[0,1]<R for xy e XY by
. Y, (x if yesu
77(xy)z{n(y n(x) if yesupp(n)
0 if y#supp(n)
Then 7 € Q(HAB).

In Theorem 2.15, it is clear that w = &g, .0 =3, 7 = 47, and My = Ty
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Notation 2.16. If S =supp(w) and T =supp(n), we denote the prob-
ability weights & and 7 in Theorem 2.15 by

J):(w, (xa))xES)a 77:(% (ny)YET)

Theorems 2.14 and 2.15 and the notation of 2.16 provide us with an
effective computational tool for dealing with the probability weights on the
forward and backward operational products.

Definition 2.17. We define the pretensor product of the quasimanuals
o and 9, in symbols 4%, by

AR = AR U AR

Foulis and Randall (1980) defined the tensor product A @ B of & and
% to be a “manual closure” of the pretensor product (assuming that & and
B satisfy certain mild regularity conditions). However, if /® % exists,
then Q(AB)=Q (SR B), and, since our concern in this paper is with
probability weights and their linear span, we have no need for o/ ® & here.
Obviously,

QUARB) = V(AR ) N Q(ARB)
and so we have the following two theorems:

Theorem 2.18. Let w: XY —>R. Then we Q(H%RB) if and only if we
Q(A X B), @ exhibits no influence of & on %, and w exhibits no influence
of B on A.

Proof. Theorems 2.10 and 2.12.

Theorem 2.19. Let w: XY »R. Then w € Q{HARB) if and only if there
exist wg € Q(H) and 4w € Q(RB), and there exist .w € Q(RB) forevery xe S =
supp(wg) and w, € Q) for every y e T =supp( ) such that

w = (w%y (xw)xes) = (&40), (wy)ye T)
Proof. Lemma 2.14, Theorem 2.15, and the notation in 2.16.

Note that the condition in Theorem 2.19 implies that w; and 4w are
the respective reduced weights (marginals) for @ on «f and %, respectively.
Furthermore, this condition requires that, for x€ S and ye T,

w%(x)xw(y) = .sdw(y)wy(x)
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3. PRODUCT WEIGHTS

In this section we introduce product weights, and use them to prove
the main theorem of the paper (Theorem 3.9). We maintain our convention
that sf and B are quasimanuals with X =\ o and Y =1 3.

Definition 3.1. Let A e V() and p € V(B). We define the product
Ap: XY >R by (A )(xy) =Aa(x)u(y).

If A e Q(sf) and p € Q(B), then it is clear that Ay € Q(ARB). Indeed,
we have, with the notation of Theorem 2.19, Ay = w Wwith wg =A, L0 =u,
«w=p for all xe S, and w,=A for all y e T. Therefore, for A € V() and
u € V(B), it follows from the bilinearity of the mapping (A, ) - Au that
A€ V(AR).

Definition 3.2. Let V()® V(AB) denote the algebraic tensor product
of the vector spaces V(&) and V(2). Then the unique linear map V(«)®
V(RB)> V(4B) such that A@pu—Ap for all A e V() and all p e V(B)
will be denoted by 8: V()@ V(RB) > V(AB).

Lemma 3.3. B: V(A)YR V(B) > V(ARB) is a linear injection.

Proof. Let 7€ V(4)® V(R) with B(7)=0. Select Hamel bases (A;)c;
and (y;);s for V(&) and V(B), respectively. Then 1=}, £;(A; ® y;), where
the coefficients #; € R are finitely nonzero. Since 8(7) =0, . t;A,(x)u;(y) =0
holds for all xeX and all ye Y. Hence, for each xeX, we have
2; [Z; tyhi(x)]p; = 0. Because the vectors (u;);., are linearly independent
in V(9), it follows that, for all xe X and all je J, ., t;A;(x) = 0. Therefore,
for all je J, ., t;A, = 0. Because the vectors (A;);.; are linearly independent
in V(«), it follows that #; =0 for all ie I and all jeJ; hence, 7=0.

The following lemma introduces a simple technical device which often
proves useful when dealing with quasimanuals. We omit the proof, which
is a routine verification.

Lemma 3.4. Let p be any object that does not belong to X =|_J &, and
let &% = U {{p}} be the quasimanual obtained by adjoining the singleton
set{plto o Let X* ={J of* =X U{p}and, for w e Q(A), define w™: X* >
[0,1]<R by 0*(x)=w(x) for xe X and «*(p)=1. Then wr>w* is an
affine isomorphism of Q(sf) onto Q(H¥), and it extends uniquely to a
linear isomorphism V()= V(sf™*).

The next lemma shows that the adjunction of a singleton set to each
of the factors of a pretensor product, as in Lemma 3.4, has no effect on the
algebraic structure of the space of probability weights on the pretensor
product.
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Lemma 3.5. Let p be an object that belongs neither to X = & nor
toY=BandletA* =S U {{p}}and B* =B U {{p}}. Let X*¥ = & * =
Xu{p}tand Y*'={ B*=Yu{p}. For o Q(AB), define w": X*Y* >
[0,1]=R by
w(xy) if x,y#p
wga(x) Jif x#py=p
a0(y) |if x=py#p
1 if x,y=p

o'(xy)=

Then w—> ' is an affine isomorphism of Q(A%) onto Q(AL*B*), and it
extends uniquely to a linear isomorphism V(A4%B)=V(«4*B*).

Proof. By a straightforward computation, o’ e Q(4%); hence, by sym-
metry, o' € Q(HARB), and it follows that w’ € Q(ARB). Evidently, the restriction
mapping Q(£* B*) > Q(HARB) is affine, and it is effective as the inverse of

w—w'.
The following lemma is the key to the proof of the main theorem.
Lemma 3.6. Let Z be an {-basic subset of X and let W be a $B-basic

subset of Y. Then, with the notation of Lemma 3.5, ZW U Zpu pW is an
A* B* -basic subset of XFY*.

Proof. Let U=ZW U Zpu pW. Note that Z is an & -basic subset of
X* and W is a B -basic subset of Y*. Suppose that o, B € Q(L*B*) and
that a|y = B|y. By Lemma 2.5, it will suffice to prove that a = 8. Define
i, 1wt X¥>[0,1]cR by u(x)=a(xp) and u'(x)=pB(xp) for all xe X*.
Since { p} belongs to 8%, w and u’ are just the reduced probability weights
in Q(#*) for @ and B, respectively. Because al|y =8|y, it follows that
w(z)=pu'(z) for all ze Z; hence, since Z is #£*-basic, we have p=p'.
Consequently,

Jued(LY), wpx)=alxp)=B(xp), VxeX"* (1)
By symmetry,
FIveUBT), v =alpy)=B(py), VyeY” )
Now, let S =supp(u)< X™ and T=supp(v)< Y*. For xe S, let
a(y)=a(xy)/p(x), BO)=B)/u(y), VyeY®

noting that ,« is a preconditioned by x and ,8 is B preconditioned by x;
hence, a, 8 € Q(AB*). Likewise, for y € T, define

a,(x)=a(xy)/v(y), B,(x)=Bxy)/v(y), VxeX*
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noting that a, is a postconditioned by y and B, is B postconditioned by
y; hence, a,, B, € (™). Therefore, for all xy € X*Y™*, we have

w(xy) = {g(x)xa (») :tf ;CZ := {gy(X)V(y) lltf ;}: ;‘ 3)
I {/g(x)xﬁ(y) it xes_ {gy(x)v(y) ) e T
Claim:
we WnT=a,=4, (5)
To prove (5), note that, by (3) and (4), we have, for all ze Z,
a,(2)v(w) = a(zw) = a|y(zw) = By (zw) = B(zw) = B,,(z) (W)
Since we T =supp(»), »(w)# 0, and it follows that
a,(z)=8,(2), VzeZ
The fact that Z is &/ *-basic implies (5).
Claim:
weWnT, xeS=.a(w)=.8(w) (6)
To prove (6), note that, by (3), (5), and (4), we have
p(x)ca(w)=a,(x)v(w) =B, (x)v(w) = u(x)L(w)
Since x e S =supp(p), u(x)#0, and (6) follows.
Claim:
we WAT, xeS=.a(w)=,8(w)=0 (7)

To prove (7), note that by (3) and the suppositionthat wg T, u(x)a(w)=0;

hence, because x € S so that u(x) # 0, we have ,a(w) =0. Likewise, by (4)

and the supposition that w¢ T, u(x),8(w)=0; hence, ,8(w)=0.
Combining (6) and (7), we have

weW, xeS=.a(w)=.8(w)

Because W is % *-basic, it follows that .a =, 8 holds for all x € S. Therefore,
by (3) and (4), @ = B, and the proof is complete.

Definition 3.7. If V() is finite-dimensional, we say that & is a finite-
dimensional quasimanual and we define

dim(sf) = dim V()
Theorem 3.8. If & and R are finite-dimensional, then
dim(4B) = dim(«) - dim(AB)
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Proof. By Lemma 3.3 and the fact that the dimension of the algebraic
tensor product V() ® V(RB) is the product of the dimensions of the factors,
we have

dim(sf) - dim(%B) <dim(4RB)
Select finite Z<2 X and W< Y so that
{flze Z}yU{ey} is a basis for V(sf)*
and
{fulwe Wlu{eg} is a basis for V(%)*

where e, and eg are the dual order units for V() and V(%) respectively.
Let m=+#2Z and n =4 W, Then,

dim(of)=#Z+1=m+1, dim(B)=#W+1=n+1

With the notation of Lemma 3.6, it follows that U=ZWu Zpu pW is
A*RB*-basic. Therefore, by Lemmas 3.5 and 3.6,

dim(AB) =dim(AL*BH)<=#U+1=mn+m+n+1=(m+1)(n+1)
=dim(sf) - dim(%)
We are now in a position to state the main theorem of the paper.
Theorem 3.9. If o and & are finite-dimensional, then
B:V(A)Y®V(B)> V(AB)
is a vector space isomorphism.
Proof. Lemma 3.3 and Theorem 3.8.

Corollary 3.10. 1If o and B are finite-dimensional, then (4% ) consists
of all finite affine combinations

0 =Y LA, LeR, Y t=1
of products A;u; of probability weights A; € Q(&f), w; € A(RB) such that
w(xy)=0 forall xeX andall yeY

Proof. Because V(&) is the linear span of (&) and V(%) is the linear
span of (%B), it follows that V(«)® V(@) is the linear span of all pure
tensors of the form A ® u with A € Q(A) and u € Q(AB). Consequently, by
Theorem 3.9, V(%) is the linear span of all product probability weights
of the form Ax with A € Q(), u € Q(%B). Thus, w € Q(ALRB) can be written
in the form w =Y, t;A,u; with A; € Q(sf), u, € Q(RB). Applying the dual order
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unit e€ V(A%B)* to both sides of the equation @ =Y tA;u; and noting that
e(Au;) =1, we find that Y ¢, =1. Since w is a probability weight, w(xy) =0
holds for all xe X, y € Y. Conversely, the fact that any w of the indicated
form is a probability weight on A% if w(xy) =0 for all xy € XY is obvious.

4. EXAMPLES—UNITARY AND EUCLIDEAN SPACES

In this section, we consider some of the consequences of the theory
developed above for the probability measures associated with finite-
dimensional Hilbert spaces over C (unitary spaces) or over R (Euclidean
spaces). We consider only spaces of dimension three or more, so that
Gleason’s theorem applies. If 7 is such a Hilbert space, then £ () denotes
the vector space of all linear operators on # and ¥(#) denotes the real
vector space of all self-adjoint operators on #.

If 7 is Euclidean, we define ¥, (%) to be the real vector space of all
skew-adjoint operators on #. Note that ¥, (%) is the orthogonal comple-
ment of ¥(¥) with respect to the inner product

(A, B)=trace(AB*) for A, Be Z(¥)

so that, in the Euclidean case, we have £(#) = V(YD V' (3.

For simplicity, we call an operator A e V() positive if it is positive-
semidefinite in the sense that (A, y)=0 holds for all vectors e . A
density operator on ¥ is a positive operator of trace one in ¥ (%), and the
convex subset of V() consisting of all such density operators is denoted
by W (). Thus, with W' () as a cone base, ¥'(3) forms a base-norm space.

The set & of all maximal orthonormal subsets of ¥ is called the frame
manual of . As mentioned earlier, there is a natural linear isomorphism
A e, from V() onto V() given by

wa(yp) =trace(AP,) =(A¢, )
for all unit vectors ¢ € ¥, and this isomorphism carries #'(%) onto the
cone base () of probability weights in V().

Now let #, and #, be finite-dimensional Hilbert spaces, either both
unitary or both Euclidean. For i =1, 2 we denote the frame manual of %,
by &;. Let # = 3, #, be the Hilbert-space tensor product and let < be
the frame manual of . There is a natural linear isomorphism

L(H,) @ L(K,) = L(H,® %)

such that the algebraic tensor product A, ® A, of the operators A, € (%¥,)
and A,e Z(¥,) corresponds to the Kronecker product of A, and A,. In
what follows, we simply identify A,® A, with this Kronecker product, so
that, for ¢ € ¥, Y ¥,,

(Ai®A)(¢®Y)=A(d)B®A,(¥)
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In particular, we shall regard ¥(3,)® ¥(3,) as a linear subspace of
V(3) = V(#, R ¥,).

Note that, if E € of,5,, then {¢ ® ¢|¢py € E} € of. Therefore, the map-
ping ¢&: V() > V(4,4,) defined by £(v)(dy) = v(¢p@¢) for ve V(H),
o el (A, 54,), is linear and maps the cone base () in V() into the
cone base Q{4 of,) in V(,54,). Hence, by composing the natural linear
isomorphism A—w, from ¥(#) onto V(&) with ¢ we obtain a linear
mapping 7: V(¥)- V(A,4,), denoted by A 7,4, such that

Ta(d¥) = E(0a)(dY) = wa(dBY) = (A(@ B ), d B ¥)

holds for all Ae ¥ (%) and all unit vectors ¢ € &, ¢ € ¥,. Evidently, 7
maps the cone base W( ) of V() into the cone base (A sf,) of V(st,54,).
Because V' (5,)= V() for i =1, 2, it follows from Theorem 3.9 that

V(7)) R V(3,) = V(A4,)® V(sf,) = V(A,>)

In fact, the restriction of : ¥ (#)— V(&,94,) to the linear subspace ¥V(#,)®
V'(3,) of V() provides just such a linear isomorphism A7, for Ae
V(%) ® V(%,). In particular, if A, € ¥V'(#)), A,e V(,), A=A ®A,, e
| o, and ¢y el o,, then we have

TA(¢¢) = (Ald)a ¢><A2({/’ 4’)

If %, and %, are unitary spaces, then V() = V(3,)® V' (,); hence,
in the unitary case, A— 7, provides a linear isomorphism

V(%)= V(st15L,)
However, in the Euclidean case,
V(%) =[V(3,)Q V(I)BLY () RV ()]

and, in this case, V' (#,)® V' () is precisely the null space of the linear
mapping 7: V(#)~> V(sf,9,). Thus, in the Euclidean case, V(o) is
isomorphic to a proper subspace of V().

Now, we investigate the question of how the various cone bases fare
under the linear mappings introduced above. Say that an operator A€ ¥V (¥)
is positive on pure tensors (PPT) if

(AY® ), p®¢)=0

holds for all ¢ e #, and all ¢ € #,. Obviously, every positive operator in
V(%) is PPT; however, there are simple examples of operators in ¥ ()
that are PPT, but not positive. Define the convex subset €(3) of ¥ (%) by

€(H)={C e V(%)|C is PPT and trace(C)=1}
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Note that W' () is a proper subset of €(¥). Evidently, = maps 4(%) onto
the cone base Q(o,54,). Define

T (%) = €(H) [V () ® V(3,)]

F () consists of all PPT operators in ¥ () that are affine combinations
of tensor products of density operators on #; and ,. In conformity with
Corollary 3.10, the restriction of 7 to () is an affine isomorphism of
F (%) onto Q(A,4,). Thus, we have the following theorem:

Theorem 4.1. Let #, and #, be unitary or Euclidean spaces of
dimensions three or more, and let X = #,®@ ¥,. Let o,, o,, and A be the
frame manuals of %, #,, and ¥, respectively. Let €(¥) be the convex set
of all self-adjoint operators on # that are positive on pure tensors and have
unit trace. Let J(3) denote the convex set consisting of those operators
in €(J) that are affine combinations of tensor products of density operators
on 3, and ¥#,. Let W () be the convex set of all density operators on #.
Then W(5)u T ()< 6(H), and there are affine isomorphisms

W(H)=Q(A) and T () = QA A,)
provided by the mappings A— w, and A— 7,, respectively.
In the unitary case, we have
W(H)y< T ()= €(¥K)

and J(H)\ W(¥) is nonempty. Thus, all of the probability measures affili-
ated with density operators on the tensor product #;® , of unitary spaces
are represented in the space (1( ./, 54,) of probability weights on the pretensor
product o, 54, of the corresponding frame manuals; however, there are
probability weights in Q(«,s/,) that do not correspond to any of the
probability measures affiliated with density operators on #,® #,. The
probability weights in T (H)\ W () correspond to the “anomalous states”
that have caused concern because they seem to assign “negative prob-
abilities™ to certain propositions affiliated with quantum mechanical systems
(Groenewold, 1985). The formalism set forth in this paper shows how such
anomalous states can arise, how they can be interpreted, and how they can
be dealt with mathematically.

Although the Euclidean case is perhaps not as significant as the unitary
case from the point of view of orthodox quantum mechanics, it is even
more interesting than the unitary case from a purely mathematical stand-
point. In the Euclidean case, €(%) is a disjoint union

C(3) = T(HONW(FH) O T(5) W (H) O W(HNT(5)
O C(IONT(H) 0 W(K))
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of four nonempty subsets. Thus, for Euclidean spaces #, and ,, we not
only have anomalous states corresponding to elements in T (F)\ W(¥), we
also have, vice versa, probability measures represented by elements of
W (H)\ T () that have no counterparts in Q(f,54,).

5. THE TOTALLY FINITE CASE

A quasimanual & is said to be finite if there are only finitely many
sets E € o; locally finite if every E € o is a finite set; and totally finite if it
is both finite and locally finite. Thus, & is totally finite if and only if |_ &
is a finite set.

Definition 5.1. The set of probability weights (.s7) for the quasimanual
s is said to be positive if, for each x el o, there exists w € Q) such
that w(x)> 0. A probability weight w € Q(«f) is said to be strictly positive
if w(x)> 0 holds for every xcl|_ &.

Lemma 5.2. Let the totally finite quasimanual & have a positive set
of probability weights Q(sf). Then there is a strictly positive probability
weight a € (W A).

Proof. For each xe X = A, select w, € Q(«) such that o, (x)>0.
With n=# X, put

Lemma 5.3. Let o be a strictly finite probability weight on the totally
finite quasimanual & Let X = o, let A e R¥, and suppose that there exists
a fixed ¢ €R such that

Y Alx)=c for every Ec¥
xeE
Then:

(i) There exist s, € R with s, >0 and there exists @ € Q(sf) such that

A =sa — lw.

(ii) A e V(A).

Proof. Because X is finite, there exists s >0 such that A(x) <sa(x)
holds forall x € X. Let u ¢ R* bedefinedby u = sa —A,andlet1 =Y __, u(x)
for any Ec &. Let w =(1/1t)u, noting that w € (sf). This proves (i), and
(ii) is an immediate consequence.

If o is a totally finite quasimanual with a positive set {}(/) of probabil-
ity weights, then Q(sf) is a polytope in V(&) and the hyperplane e (1)
is the affine span of Q(«) (Gudder et al., 1987); hence, the affine dimension
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of Q(sf) is dim(f) — 1. Conversely, by a theorem of Schultz (1984), every
rational polytope is of the form Q(«f) for a suitable choice of the totally
finite quasimanual .

Definition 5.4. Let o be a totally finite quasimanual with X ={_J /.
The linear transformation T: R¥ > R¥ defined by

(T(Y))E) = ZE ¥(x) for ¢eR*, Eed

is called the incidence transformation for . The rank of T is called the
rank of the quasimanual .

The matrix (¢, ) for the incidence transformation T with respect to
the Kronecker bases for R* and R is the incidence matrix for the
quasimanual &. Evidently,

{1 if xeE
th

= f X, Eed
0 if xgE [°OF *&% EE€

The proof of the following theorem first appeared in Kldy (1985).

Theorem 5.5. Let o be a totally finite quasimanual with a positive set
of probability weights and let X =|_J &£ Then

dim(sf) =1+ # X —rank(s/)

Proof. By part (ii) of Lemma 5.3, the null space of T coincides with
the null space of e; hence,

dim(sf) =dim(V(sf)) =1+ nullity(T)
=1+dim(R*) —rank(T)
=144 X —rank(¥)

For the remainder of this section we assume that & and & are totally
finite quasimanuals with X =\_} & and Y =\ %. We make the standing
assumption that both & and B carry positive sets of probability weights.
Therefore, by Lemma 5.2, there exist strictly positive probability weights
acHA), BeQ(B); hence, the product weight af is a strictly positive
probability weight in Q(RB). Likewise, af is a strictly positive probability
weight in Q(A%), Q(ARB), and Q(H x B); hence, AB, AR, AR, and
A x B are totally finite quasimanuals carrying positive sets of probability
weights.

Theorem 5.6. rank(sf x B)=rank(s) - rank(%).

Proof. The incidence matrix of & X B is the Kronecker product of the
incidence matrices of &/ and 2.



216 : Kliy, Randall, and Foulis

In the following theorem, we use the notations ey and eg for the dual
order units e, € V()* and ez € V(B)*.

Theorem 5.7. Let U={¢p e V(B)*|eg ° ¢ € V(sf)}. Then U is a vector
subspace of V(%)* and the mapping ¥: V(4%B)~ (RY)* defined by
(T(¥)(x))(y)=v(xy) for ve V(4B), xcX, and yeY, is a linear
isomorphism of V(%) onto U.

Proof. Let ve V(4%) and let ¢ =¥ (). We begin by showing that
¢ € V(B)™. There exist &, A € U(H%) and nonnegative real numbers s and
t such that v = s& — tX. Also, with the notation of 2.16, & = (wg, (x®)xes),
X=(/\@,(XA)x€T), where S =supp wy and T =supp Ag. Thus, for each
xeXnT,

¢ (x) = s0qg(X)w — hg(x):h € V(B)

If xeS\T, then ¢(x)=swg(x)we V(RB), if xeT\S, then o¢(x)=
—tAg(x)A € V(B),and, if xe X\(T U S), then ¢(x) =0¢e V(%). Therefore,
¢ € V(B)*. Furthermore,

ez (@ (x)) = swgz(x) — thg(x)

and it follows that eg ° ¢ = swg — tAg € V(). Therefore, ¥(v)=¢  U.

Evidently, ¥: V(&%) ~ U is linear and injective. We complete the
proof by showing that it is surjective. Thus, suppose that ¢ € U and define
veR*¥ by v(xy)=(¢(x))(y) for all xy € XY. It is sufficient to prove that
ve V(ABRB), for then, ¥(v) = ¢. Let G e 4%, so that there exists E € o and,
for each x € E, there exists F, € B such that G={J_ _; xF,. Let

c= Y vxy)= ¥ (¢(xN()
xyeG xyeG

By Lemma 5.3, it is enough to show that ¢ is independent of the choice of
G e d%. Because ¢ € U, we have ¢(x)e V(RB) for every x € X; hence,

c= ZG(¢(x))(y)= ) [ ZF (dJ(X))(y)] = ZE eg(¢(x))

xye xeE

=Y (egod)(x)=eqy(eg o P)

xeE
where, in the last step of the computation, we have used the fact that
egope V(A).
Theorem 5.8. dim(H4%) = dim(&f) +[dim(B) —1](# X).
Proof. Let U be defined as in Theorem 5.7, noting that dim(U)=

dim(A4%). Define L: V(B)* >R* by L(dp)=egp°dp for ¢e V(B)X
Evidently, L is linear and U = L™'(V(sf)). We claim that L: V(8)* »R*
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is surjective. Indeed, let ¢y e R* and, for each x € X, select B, € V(%) such
that eg(B,) = ¥(x). [This is possible because the nonzero linear functional
ex: V(B) - Ris surjective.] Define ¢ € V(B)* by ¢(x) = B, for each xe X.
Then, for x € X,

(L(¢))(x) = (eg ° ¢)(x) = ex((x)) = ex(B,) = ¥(x)

Hence, L(¢) = . Let A< V(2B)* be the null space of L and let A< V(RB)
be the null space of eg. Evidently, A= A% hence,

dim(A) = [dim(V(B)) - 1](# X) =[dim(B) —1](¥ X)

Because A is a linear subspace of U= L"'(V(s)), we have dim(U)=
dim(U/A)+dim(A); hence, it suffices to prove that dim{(U/A)=dim(«).
However, because L: V(B)* »RX is surjective and V() is a linear sub-
space of R,

U/A=L7(V(s4))/L7'(0)= V(L)
and, therefore, dim(U/A) =dim(V(s)) = dim(«).
Corollary 5.9. dim(€%®) = dim(B) +[dim() —1](% Y).
Theorem 5.10. dim(sf x B)+ dim(AB) = dim(HLB ) + dim(LRB).

Proof. Let a=dim(sf), b=dim(AB), r, =rank(A), r, =rank(B), x=
#X, and y = # Y. By Theorem 5.5,

r,=1+x—a and r=1+y~b
Thus, by Theorems 5.5 and 5.6,

dim(# X B) =1+ #(XY) —rank(f X B) =1+ xy — 1,1
=1+xy—(1+x~a)(1+y—b)
=qg+(b—-1)x+b+(a—1)y—ab

Therefore, by Theorem 3.8, Theorem 5.8, and Corollary 5.9,
dim(sf X B) + dim(AB) = dim(H4%B ) + dim(AB)
Lemma 5.11. V(AB) = V(ARB) " V(AB).

Proof. This result is an immediate consequence of Lemma 5.3,
Definition 2.17, and the fact that 4% N 4% is nonempty.

Because o/ X B < A%, it follows that Q(H%R) = Q( x B); hence, that
V(HRB) < V(A x B). Likewise, V(HIB) < V(s x B), and it follows that, as
subspaces of R*Y, V(A%B)+ V(ARB) < V(o x B). Actually, this inclusion
can be strengthened to an equality.
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Theorem 5.12. V(AB)+ V(ARB)= V(s x B)
Proof. By Lemma 5.11 and Theorem 5.10, we have
dim(V(ARB)+ V(ARB))
=dim(V(4%)) +dim(V(H4B)) — dim( V(LB) n V(AB))
=dim(V(AR)) + dim(V(LRB)) — dim( V(LRB))
=dim( V(A4 X B))
The theorem now follows from the fact that
V(AB)+ V(AB)< V(A x B)

Corollary 5.13. Letw e R*. Then w € Q(sf x B) if and onlyif @ (xy) =0
for all xy € XY and there exist & € U(AB), & € Q(AR), and 1 € R such that
w=1+(1-1)a.

Proof. It is clear that any o € R*Y that satisfies the given conditions is
a probability weight on & x 8. Conversely, let w € Q(A X B). Then, w(xy) =
0 holds for all xye XY. Furthermore, by Theorem 5.12, we can write
w=v+u with ve V(4RB), u € V(ARB). Select a strictly positive probability
weight a € Q(ARB), noting that « is automatically a strictly positive probabil-
ity weight in both Q(#4%) and Q(«¢%). By Lemma 5.3, there exist p, g >0
and there exists 7 €Q(4%) such that v = pa — q7. Likewise, there exist
u, v>0 and there exists ® € Q(HRB) such that u = ua — vé. It follows that

wo=(ptu)a—qn—vo
Let E € o, F € B, and sum both sides of the latter equation over all xy € EF
to conclude that 1 =p+u—q—v. Hence,
w=(1+g+v)a—qn—vo »
Now define
1+g+v q . 1 + v
o — =

1+v 1+v17 1+vw l+vw
noting that, on the one hand, @ € V(«/%), and, on the other hand, &€
Q(A X RB). Because & € Q( x B), it follows that &{xy) =0 for all xy € XY.
Also, &(xy) sums to 1 as we run xy through any operation EF € o X 3.

Since EF € &3, it follows from the fact that & € V(4%) that & € Q(A%R).
Furthermore, with ¢t =1+ v, we have t® = w + v@, so that

w=to+(-v)o=td+(1-1)a

aj:
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