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We study a general tensor product for two collections of related physical 
operations or observations. This is a free product, subject only to the condition 
that the operations in the first collection fail to have any influence on the statistics 
of operations in the second collection and vice versa. In the finite-dimensional 
case, it is shown that the vector space generated by the probability weights on 
the general tensor product is the algebraic tensor product of the vector spaces 
generated by the probability weights on the components. The relationship 
between the general tensor product and the tensor product of Hilbert spaces is 
examined in the light of this result. 

I. B A C K G R O U N D  

A c c o r d i n g  to yon  N e u m a n n ,  a q u a n t u m  mechan ica l  system St is rep-  
resen ted  by  a complex ,  s epa rab le  Hi lbe r t  space  ~ in such a way  that  
observab les  on 6e c o r r e s p o n d  to se l f -ad jo in t  ope ra to r s  on ~ ,  and  states on 
90 are r ep resen ted  by  dens i ty  opera to r s  (posi t ive,  se l f -adjoin t ,  t race-c lass  
ope ra to r s  with t race 1) on ~ .  I f  A is the  se l f -ad jo in t  o p e r a t o r  on  
co r r e spond ing  to the  obse rvab le  ~ on 5 ~, i f  M ~-~ PM is the  spec t ra l  measure  
for A, and  i f  W is the  dens i ty  o p e r a t o r  represen t ing  the state o f  0 ~ then  
the p robab i l i t y  that  a m e a s u r e m e n t  of  6 will y ie ld  a numer ica l  resul t  in the 
Borel  set M __ • is given by  t race (WPM).  This suggests  that ,  in genera l ,  a 
p ro jec t ion  o p e r a t o r  P (selfoadjoint  i d e m p o t e n t )  on YC can be r ega rded  as 
a y e s / n o  p r o p o s i t i o n  a b o u t  0 ~ in such a way  that  the  p robab i l i t y  in state 
W that  the  answer  to P is " y e s "  is given by  t r a c e ( W P )  (yon N e u m a n n ,  
1955, p. 247; Birkhoff and  von N e u m a n n ,  1936). 

The set L ( ~ )  o f  all p ro j ec t ion  ope ra to r s  P on ~t ~ forms a comple t e  
o r t h o m o d u l a r  la t t ice ( K a l m b a c h ,  1983). Since the  p ro jec t ion  ope ra to r s  
P c L ( ~ )  can  be  r ega rded  as y e s / n o  p ropos i t i o ns  abou t  9 ~, it is na tu ra l  to 
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refer to the orthomodular lattice L ( ~ )  as the "logic" of 6e (Birkhoff and 
von Neumann, 1936). Each density operator W on ~ induces a probability 
measure/zw: L ( ~ ) -  [0, 1] ~ R such that 

~w(P)  =t race(WP)  for all P ~ L ( g )  

By a celebrated theorem of Gleason (1957), if dim(~g) >-- 3, then the mapping 
W~--~w is a bijection from the set ~ff'(~) of all density operators on 
onto the set of  all probability measures on L(~) .  The convex set ~(~g)  
forms a cone base for its linear span, the base-norm space ~ ( ~ )  of all 
self-adjoint trace-class operators on ~,  and the base norm on o//.(~) 
coincides with the trace norm (Riittimann, 1985b). Each element A ~ ~ ( ~ )  
induces a (signed) measure tZA: L ( ~ ) ~  ~ such that 

I~a(P) = trace(WP) for all P e L ( ~ )  

A normalized vector ~ in ~ determines a projection operator P~, 
according to the formula 

P~,(~b) = (~b, ~b)~b for all ~b c 

(We use the mathematician's convention that the inner product is conjugate 
linear in its second argument.) Thus, a maximal orthonormal set E of vectors 
in ~ determines a maximal orthonormal set {P~,[r c E} of propositions in 
L ( ~ ) ,  and therefore can be construed as representing a maximal observation 
in the sense of Dirac (1930; Foulis and Randall, 1985). 

When two quantum mechanical systems Sr and b~2, represented by 
Hilbert spaces ~1 and ~2, are "coupled" to form a composite system 
31 + ~'~P2, it has been supposed that the Hilbert space representing 5e~ + 6e2 
ought to be the Hilbert-space tensor product ~ 1 |  (Jauch, 1968). [In 
spite of the fact that Schr6dinger was in part  responsible for this representa- 
tion, he was uneasy about some of its consequences (Schr6dinger, 1935, 
1936).] In the tensor product representation, the states for 5el + b~ corre- 
spond to density operators W e  74P(~1| For such a W, the reduced 
states, or marginals, Wx ~ 74P(~1) and W2~ 74~(~2) affiliated with the com- 
ponent systems 6el and b~ are uniquely determined by the conditions 

trace(W1P) = trace[ W(P |  

trace(W2Q) = trace[ W(~ | Q)] 

for all P c  L(~g~) and all Q e  L ( ~ ) .  
Now suppose that the system 5e~ + 6e2 is represented by the Hilbert 

space ~gl| ~ .  If  E is a maximal orthogonal set of vectors in ~a,  we can 
define the conditional probability of Q ~ L(~2) in state W, given that the 
maximal observation E was made on 6~, to be 

~ tzw(Q)= ~ trace[W(P~,| 
~p~E 
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In the sense of  Dirac (1930, p. 13), we say that the system ~r has no influence 
on the system 5r if, for every state W ~ off.(~l | ~2), the conditional prob- 
ability measure Ep.w on L(~2) is independent of  the choice of  the maximal 
observation E on ~1. However,  it is easy to see that 

zl-~w(Q) = trace(W2Q) 

is automatically independent of  the choice of  E;  hence, / fS~ + ~2 is represen- 
ted by the tensor product ~1 | ~2, then 5~t has no influence on 5r 2. Likewise, 
5r has no influence on 5r This is a feature of  the tensor product representa- 
tion of coupled systems that is often overlooked by those who study the 
mathematical  foundations of  quantum mechanics: The representation of 
coupled systems by the Hilbert-space tensor product  allows only correlations 
between the systems-- there  can be no influence of one system upon the other[ 

I f  ~fl and ~2 are finite-dimensional, a simple dimension argument 
shows that there is a natural vector-space isomorphism 

A general tensor product  for two collections of  related physical operations 
or observations was introduced in Foulis and Randall  (1980) and Randall  
and Foulis (1980). This general tensor product  is a "free product ,"  subject 
only to the condition that the operations in the first collection fail to have 
any influence (in the sense of  Dirac) on the statistics of  operations in the 
second collection and vice versa. The main theorem of the present paper  
is an extension of the isomorphism above to this generalized tensor product. 

In order to set the stage for the subsequent developments,  we consider 
a separable Hilbert space ~ over either of  the fields • or C. We define ~r 
to be the set of  all maximal orthonormal sets of  vectors E in ~,  and we 
think of such an E as a maximal observation in the sense indicated above. 
Then X = IU {E]E ~ ~4} is the unit sphere in Y(, and the probability measures 
/~ on the projection lattice L ( ~ )  are in a natural bijective correspondence 
tz ~ to with the mappings to: X ~ [0, 1 ]_  R satisfying the condition 

Y~ to (qQ=l  fo ra l l  E ~ /  
qJ~E 

in such a way that, for all qJcX, t o ( ~ ) = / x ( P , ) .  ( I f  E is infinite, the sum 
is understood in the sense of  unordered summability.) Such a mapping to 
is called a probability weight on M. 

Denote by ~(~r the convex subset of  the real vector space ~ x  consist- 
ing of all of  the probabili ty weights to on M. The linear span of II(M) in 
R x forms a base-norm space V(~/) with f ~ ( J )  as cone base (Cook, 1985). 
I f  dim(Yg)-> 3, then the correspondence 
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establishes an affine isomorphism of ~162 onto f l ( ~ ) ,  and this isomorph- 
ism has a unique extension to a linear isomorphism 

~(~)-~ V(~r 

Thus, the set of  sets ~ ,  divested of all the remaining structure of  the Hilbert 
space Y(, serves as a carrier of  the measures on L(W) induced by the 
self-adjoint trace-class operators on ~. 

2. P R O B A B I L I T Y  W E I G H T S  

In the following definitions, we generalize the ideas introduced at the 
end of the last section. We begin by considering an arbitrary nonempty set 

of  nonempty sets 

= {~, F, G , . . . }  

Such a set of  sets, with or without additional requirements, has been called 
a space (Greechie and Miller, 1970), a hypergraph (Gudder  et aL, 1987), or 
a coverspace (Gudder,  1986). In the operational approach to the mathemati-  
cal foundations of  quantum mechanics, such an ~ (subject to suitable 
regularity conditions) is regarded as representing a catalogue, or manual, 
of operations or experiments (Randall and Foulis, 1973, 1978, 1985; Foulis 
et al., 1983). This brings us to the following definition: 

Definition 2.1. A quasimanual is a nonempty set ~ of  nonempty sets 
satisfying the condition that 

E , F ~ s #  with E c F ~ E = F  

I f  ~4 is a quasimanual,  we use the notation U M for the union of all of  the 
sets in ~r so that 

U ~ = U {EIE ~ .~} 

The set M of all maximal orthonormal subsets of  a Hilbert space 
may be regarded as one of  the prototypical examples of  a quasimanual.  In 
this case, U .d is the unit sphere in ~.  Another important example is 
obtained as follows: Let S be a nonempty set, let At be a o--field of  subsets 
of  S, and consider the Borel space (S, M). Then ~ (S ,  At), the set of  all 
countable partitions of  S into nonempty disjoint sets in At, is a quasimanual 
and U ~(S ,  ~ )  = At\{~}. 

Definition 2.2 Let ~r be a quasimanual with X = U ~- A probability 
weight on s4~ is a mapping w: X-> [0, 1] ___ ~ such that 

w(x )=  1 for all E ~ 
x E E  
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We denote by 1~(~r the set of  all probability weights on ~r For to �9 ~(~r 
we define the support of to, in symbols supp(w),  by supp( to )=  
{x �9 Xlto(x) ~ 0}. I f  A ~ E �9 ~ / a n d  to �9 ~(~ / ) ,  we define 

to(A)= E to(x) 
x ~ A  

The linear span of 12(d)  in the real vector space ~ x  is denoted by V(~r 

For a Borel space (S, ~ ) ,  we observe that V(~(S,  J / ) )  is naturally 
isomorphic to the space of all (signed) measures of  bounded variation on 
(S, ~/) in such a way that 12(~(S, ~/)) corresponds to the space of all 
probabili ty measures on (S, ~ ) .  

Theorem2.3. If~r is a quasimanual and f~(~r r Q, then (V(~/),  f~(~) )  
is a base-norm space and, under the base norm, V(~/) is a Banach space. 

Proof Cook (1985). 

In what follows, V(~r denotes the Banach dual of  V(~/) and e �9 
V(~r denotes the dual order unit. Note that, for any E e ~/ and any 
v �9 V(~r we have 

e ( u ) =  E v(x) 
X ~ E  

Definition 2.4. Let M be a quasimanual such that O ( d ) r  • and let 
X = U ~/. For each x �9 X, define the frequency functional fx �9 V(~)* by 
f~(v) = v(x) for all v~  V(~/). A subset B of X is said to be sg-basie if 
{ f i l x � 9  B}u{e}  is a total subset of  V(~r 

Note that each frequency functionalf i  belongs to the dual order interval 
[0, e]; hence, it is a counter in the sense of  Riittimann (1985a). I f  V(~r is 
finite-dimensional and B is an ~/-basic subset of  X = U ~/, then we have 

dim(V(~/))  = dim(V(~r _< 4~ B + 1 

where we denote by 4~ B the cardinal number  of  the set B. The following 
lemma is a consequence of the fact that, for w, u c f~(~) ,  we have to - v 
ker(e). 

Lemma 2.5. Let ~/ be a quasimanual such that 1-1(~/)r Q and let 
B c X = U ~4. Then B is ~/-basic if and only if, for to, 7/�9 f~(~/), to [B = ~ [~ 
t o = r / .  

Notation 2.6. In what follows, we use the notation xy for the ordered 
pair (x,y) .  Likewise, Ey denotes the set of  all ordered pairs (x ,y)  with 
x �9 E, xF denotes the set of  all ordered pairs (x, y) with y ~ F, and EF 
denotes the set of all ordered pairs (x, y) with x �9 E and y e F. 
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For the remainder of  this section, we assume that ~ and 90 are 
quasimanuals with X = U M and Y = U 90. 

Definition 2.Z We define the Cartesian product M x90 of  the 
quasimanuals M and 90 by M x 90 = {EFIE ~ M, F s 90}. I f  to ~ [ I (M x 90), 
E ~ M ,  and F~90,  we define e~O C[1(90) and t o F ~ ( M )  by Eto(y)=to(Ey) 
for all y ~  Y and toF(X)= to(xF) for all x ~  X. 

Note that X Y  = [J ( M x 90). 

Definition 2.8. I f  to ~ I)(M x 90), then we say that to exhibits no influence 
of  M on 90 if ~to c 12(90) is independent of  the choice of  E ~ M. Likewise, 
we say that to exhibits no influence of  90 on M if (.O F E ~ '~( ,~)  is independent 
of  the choice of  F ~ 90. 

By adjoining subsets of  X = U M to a quasimanual M in such a way 
as to preserve the condition in Definition 2.1, we obtain a larger quasimanual 
M' with X = [ J  M'. Obviously, ~(M')c_ ~(M) .  Thus, the passage from M 
to a larger M' (with the same union X )  can be regarded as one means for 
imposing a condition on the probability weights to ~ 12(M), i.e., to satisfies 
the condition in question if and only if to belongs to the smaller set I)(M').  
In the next definition, we introduce an enlargement of  M x 90 that has the 
effect of  imposing the condition that 90 has no influence on M (see Theorem 
2.10). 

Definition 2.9. We define the forward operational product ~ of the 
quasimanuals M and 90 by 

-~-~ = {xUe xFx[E ~ M and Fx E 90 for every x ~ E } 

Note that M x 90 _c M ~  and X Y  = U (M x 90) = ~.J M~ .  Therefore, the 
passage from the Cartesian product  to the forward operational product  can 
be regarded as imposing a condition on the probability weights in 12(M x 90). 
The following theorem shows just what this condition is. 

Theorem 2.10. I f  to~ l~(Mx90) ,  then to~l)(~/--~) if and only if to 
exhibits no influence of 90 on M. 

Proof Randall and Foulis (1980). 

The arrow in the notation M ~  is supposed to indicate the direction of  
influence (if any) from M to 90. By reversing all ordered pairs in the definition 
of the forward operational product, we obtain the backward operational 
product, in which the influence (if any) is from 90 to M. 

Definition 2.11. Define the "switching mapping"  zr: Y X ~ X Y  by 
~r(yx) = xy for x ~ X, y ~ Y. Then, the backward operational product ~ is 
defined by M90 = {zr (G)[Gc  ~-~}. 
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Corollary 2.12. I f  to e f~(z4 x ~ ) ,  then to ~ f~(~--~) if and only if to 
exhibits no influence of M on ~.  

Proof Randall and Foulis (1980). 

In what follows, we denote generic probability weights on ~ and 
~r by 03 and o3, respectively. As a consequence of Theorem 2.10 and 
Corollary 2.12, we can make the following definition. 

Definition 2.13. Let 03 e I I ( ~ - ~ )  and o3 e f~(~--~). Define the reduced, 
or marginal, weights 03~ e 12(~r and ~03 e f~(~)  by 03~ = 03r for any F e 
and ~03 = Eo5 for any E e ~r For x e supp(03~), define x03: Y ~  R by x03(Y) = 
03(xy)/03~(x) for all y e Y. Likewise, for y e supp(~oS), define 03y: X ~ R by 
t~y(x) = t~(xy)/~ct~(y) for all x e X. 

We omit the straightforward proof  of  the following lemma: 

Lemma 2.14. Let 03 eI'~(~--~) and aS el'~(~--~). Let x e X  and y e  Y. 
Then x03 e l l ( ~ )  and, likewise, 03y e I)(M). Furthermore, if 03~(x) = 0, then 
03(xy) = 0  for all y e  Y, and, if ~03(y) = 0, then 03(xy) = 0  for all xeX .  

The probabili ty weights x03 and OSy in Lemma 2.14 are referred to as 
03 preconditioned by x and 03 postconditioned by y, respectively. With the 
notation of  Lemma 2.14, we have for every x e  X and every y e  Y, 

03(xy)={o~(X)~03(y) if x ~ supp(03~) 
if x ~ supp(03~) 

Of  course, a similar formula holds for 03(xy). These formulas can be used 
in reverse to obtain arbitrary probability weights on the forward and back- 
ward operational products. The technique is shown in the following theorem, 
the proof  of  which is straightforward. 

Theorem 2.15. Let to ~ ~(~r and, for every x c supp(to), let ~to e l~(~).  
Define 03: XY~[O, 1]___R for x y e X Y  by 

03(xy)={o(X)xto(y ) if x c supp(to) 
if x E supp(to) 

Then 03 el)(~--~) .  Likewise, let ~7 e l ~ ( ~ )  and, for every yesupp(~7) ,  let 
r& e l)(s~). Define r~: X Y ~  [0, 1] _ ~ for xy e X Y  by 

~(xy)={o(y)~y(x) if y e supp('q) 
if y ~ supp(~7) 

Then ~ e f~(~--~). 

In Theorem 2.15, it is clear that to = 03~, xto =x03, r/=~r~, and By = r~y. 
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Notation 2.16. I f  S = supp(to) and T = supp(~7), we denote the prob- 
ability weights o3 and ~ in Theorem 2.15 by 

(B ~-- ( to ,  (xto)xcS), ~ "~- (~, (7~y)ycT) 

Theorems 2.14 and 2.15 and the notation of  2.16 provide us with an 
effective computational  tool for dealing with the probabili ty weights on the 
forward and backward operational products. 

Definition 2.17. We define the pretensor product of the quasimanuals 
M and ~ ,  in symbols M~,  by 

~ = ~ - ~  u ~ - ~  

Foulis and Randall (1980) defined the tensor product M| ~ of M and 
to be a "manual  closure" of  the pretensor product  (assuming that M and 
satisfy certain mild regularity conditions). However, if M |  exists, 

then f ~ ( M Y 2 ) = f I ( M |  and, since our concern in this paper  is with 
probability weights and their linear span, we have no need for M | ~ here. 
Obviously, 

a ( ~ )  = ~(~--~) n ~ ( ~ - ~ )  

and so we have the following two theorems: 

Theorem 2.18. Let to: X Y ~ R .  Then toEf~(M~)  if and only if toe 
12(M x ~ ) ,  to exhibits no influence of M on ~ ,  and to exhibits no influence 
of ~ on M. 

Proof Theorems 2.10 and 2.12. 

Theorem 2.19. Let to: XY-~R.  Then to E 12(M~) if and only if there 
exist to~ E ~q(M) and ato E l~(~) ,  and there exist xto E 12(~) for every x E S = 
supp(to~) and toy E O(M) for every y E T = supp(~to) such that 

to = ( to~,  (xto)x~s) = (~to, (toy)y~ ~) 

Proof Lemma 2.14, Theorem 2.15, and the notation in 2.16. 

Note that the condition in Theorem 2.19 implies that to~ and ~to are 
the respective reduced weights (marginals) for to on M and ~,  respectively. 
Furthermore, this condition requires that, for x E S and y E T, 

t o ~ ( x ) x t o ( y )  = ~ , to(y) toy(x)  
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3. P R O D U C T  W E I G H T S  

In this section we introduce product weights, and use them to prove 
the main theorem of the paper  (Theorem 3.9). We maintain our convention 
that ~ and ~3 are quasimanuals with X = U ~l and Y = U ~. 

Definition 3.11 Let h ~ V(~/) and /z c V ( ~ ) .  We define the product 
A/z: XY->• by (h/~)(xy)= h(x)tz(y) .  

I f  h c fl(~4) and tz ~ l ' l (~ ) ,  then it is clear that h/~ ~ 1-1(~r Indeed, 
we have, with the notation of Theorem 2.19, htz = to with oJ~ = A, ~to =/~, 
xto --/z for all x ~ S, and toy = h for all y ~ T. Therefore, for h s V(~t) and 
/z ~ V ( ~ ) ,  it follows from the bilinearity of  the mapping (h,/~) --> h/~ that 
3`g e v ( ~ ) .  

Definition 3.2. Let V(~r174 V ( ~ )  denote the algebraic tensor product 
of  the vector spaces V(~/) and V(~3). Then the unique linear map V ( ~ )  | 
V(~3)--> V(~1~3) such that 3̀  | for all 3. ~ V(~/) and all /z6 V(~3) 
will be denoted by fl: V(~/ ) |  V(~3)--> V(~g3). 

Lemma 3.3. fl: V(sg)|  V(~)--> V(sg~)  is a linear injection. 

Proof Let z~  V(~/ ) |  V(Y3) with f l ( z )= 0. Select Hamel  bases (3`i)i~i 
and (tzj)j~j for V(~r and V ( ~ ) ,  respectively. Then z = Y~0 t/j(3`i| where 
the coefficients tij e g~ are finitely nonzero. Since fl(z) = 0, ~ tij3`i(x)tzj(y) = 0 
holds for all x ~ X  and all y ~  Y. Hence, for each x ~ X ,  we have 
~ [~i to3`i(x)]tz~ = 0. Because the vectors (k~)j~J are linearly independent 
in V(~3), it follows that, for all x ~ X and all j ~ J, Y~i to.hi(x) = 0. Therefore, 
for all j ~ J, Y~ to.hi = 0. Because the vectors (3` i )~ are linearly independent 
in V(~4), it follows that t o = 0 for all i ~ I and all j ~ J ;  hence, ~- = 0. 

The following lemma introduces a simple technical device which often 
proves useful when dealing with quasimanuals. We omit the proof, which 
is a routine verification. 

Lemma 3.4. Let p be any object that does not belong to X = U ~r and 
let ~ = ~ w {{p}} be the quasimanual obtained by adjoining the singleton 
set {p} to ~ .  Let X * = U ~4~ = X ~ {p} and, for to ~ [ l ( ~ ) ,  define to~: X ~ --> 
[0, 1]___~ by to~(x )= to (x )  for x ~ X  and ~o~(p)= 1. Then to~-->o~ ~ is an 
affine isomorphism of  12(~) onto f ~ ( ~ ) ,  and it extends uniquely to a 
linear isomorphism V(~4)--- V ( ~ ) .  

The next lemma shows that the adjunction of a singleton set to each 
of the factors of  a pretensor product,  as in Lemma 3.4, has no effect on the 
algebraic structure of  the space of probabili ty weights on the pretensor 
product. 
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Lemma 3.5. Let p be an object that belongs neither to X = [._.J sr nor 
to Y = [..) N and let M* = M ~ {{p}} and N* = N u {{p}}. Let X *  = I_] ~/* = 
X~{p}  and Y * = U N  * =  Y~{p}. For to ~fI(MN),  define to':X*Y*~ 
[0, 1]___N by 

to(xy) { i f  x ,y~p  

to ' (xy)= to~(x) if x~p ,y=p  
~to (y) if x=p ,y~p  

1 if x,y=p 

Then to- - to '  is an affine isomorphism of l ) (s r  onto f~(~/*~*) ,  and it 
extends uniquely to a linear isomorphism V(s/~)---  V(zd*~*) .  

Proof By a straightforward computation, to'~ f~(~-~); hence, by sym- 
metry, to' ~ l l  (M--~), and it follows that to' ~ I I (~/~) .  Evidently, the restriction 
mapping l ) ( s r  ~ f~(M~) is anne ,  and it is effective as the inverse of  
to  :---> to  P. 

The following lemma is the key to the proof  of the main theorem. 

Lemma 3.6. Let Z be an ~d-basic subset of X and let W be a ~-basic  
subset of Y. Then, with the notation of Lemma 3.5, Z W u  Zp upW is an 
sC*~*-basic  subset of X ~ Y*. 

Proof Let U=ZWuZpupW.  Note that Z is an sC*-basic subset of 
X*  and W is a ~*-bas ic  subset of Y*. Suppose that a,/3 ~ l ) (~d*~ *) and 
that alu =/31~. By Lemma 2.5, it will suffice to prove that a =/3. Define 
/z,/z': X ~ ~ [0, 1] ___ R by /z(x) = a(xp) and /x'(x) =/3(xp) for all x ~ X ~. 
Since {p} belongs to ~ * , / x  and/x '  are just the reduced probability weights 
in O(sr *) for a and /3, respectively. Because  l =/31u, it follows that 
tx(z)=~'(z) for all zcZ;  hence, since Z is si*-basic,  we have /z =/x' .  
Consequently, 

:ltzell(s~*), tx(x)=a(xp)=~(xp), VxeX*  (1) 

By symmetry, 

B~,6f~(~*), ~,(y)=a(py)=fl(py), Vye Y* (2) 

Now, let S = supp(br) ___ X*  and T = supp(l,) ~ Y*. For x c S, let 

xot(y)=o~(xy)/g(x), x[3(y)=/3(xy)/tx(y), Vy~ Y* 

noting that x~ is a preconditioned by x and ~/3 is/3 preconditioned by x; 
hence, xa, ~/3 ~ f ~ ( ~ * ) .  Likewise, for y ~ T, define 

o~y(x)=o~(xy)/~,(y), /3y(X)=/3(xy)/t,(y), VxEX* 
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noting that Oly is a postconditioned by y and/3y is fl postconditioned by 
y; hence, ay,/3y e ~(M*) .  Therefore, for all xy e X* Y*, we have 

if x ~ S  if y~ T 

~(xy)={o(X)xfl(y ) if x e S =  {floY(X)l.,(y) if y e T  
if x ~ S  if y ~ T  

Claim: 

(3) 

(4) 

we W n  T~aw=13w (5) 

To prove (5), note that, by (3) and (4), we have, for all z e Z, 

o,w(z),,(w) = o~(zw) : ~ [ . j(zw) : /31  ~ (zw)  = ~(zw) = t~ . ( z )~ (w)  

Since w e T = supp(~,), ~,(w) # 0, and it follows that 

~w(z) = t~w(Z). V z e Z  

The fact that Z is sC*-basic implies (5). 
Claim: 

we W n  T, xeS~xa(W)=,:f l(w) (6) 

To prove (6), note that, by (3), (5), and (4), we have 

M x ) x a ( w )  = O,w(X)~,(w) = ~..(x)~,(w) = ~(x) , j3(w) 

Since x e S = supp(/~), ~ (x )  ~ 0, and (6) follows. 
Claim: 

w e  w \ r .  x e S ~ x , ~ ( W ) = x ~ ( w ) = O  (7) 

To prove (7), note that by (3) and the supposition that w ~ T,/z (x)xa (w) = 0; 
hence, because x e S so that t z ( x ) #  0, we have xa(w) = 0. Likewise, by (4) 
and the supposition that w r T, ~ (x)xfl (w) = 0; hence, ~/3 (w) = 0. 

Combining (6) and (7), we have 

we  W, x e S ~ x ~ ( w ) = ~ t 3 ( w )  

Because W is ~ *-basic, it follows that xo~ = ~/3 holds for all x e S. Therefore, 
by (3) and (4), a = fl, and the proof  is complete. 

Definition 3.7. If V(~r is finite-dimensional, we say that ~r is a finite- 
dimensional quasimanual and we define 

dim(~/) = dim V(~r 

Theorem 3.8. Ifsg and ~ are finite-dimensional, then 

d i m ( ~ )  = d im(~)  �9 d im (~ )  
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Proof By Lemma 3.3 and the fact that the dimension of  the algebraic 
tensor product  V ( d ) |  V ( ~ )  is the product of  the dimensions of  the factors, 
we have 

d i m ( d )  �9 d i m ( ~ )  -< d i m ( d ~ )  

Select finite Z ___ X and W___ Y so that 

{f~[z~Z}w{e~} is a basis for V ( d ) *  

and 

{fwlwc W}u{e~} is a basis for V(~ )*  

where e~ and e~ are the dual order units for V ( d )  and V(~ ) ,  respectively. 
Let m = :~ Z and n = # W. Then, 

d i m ( d )  = # Z +  1 = r e + l ,  d i m ( ~ ) =  # W + I  = n + l  

With the notation of  Lemma 3.6, it follows that U = Z W u Z p u p W  is 
d * ~ - b a s i c .  Therefore, by Lemmas 3.5 and 3.6, 

d i m ( d ~ ) - - - d i m ( d ~ * ) -  < # U + I  = mn+m+n+l=(m+l)(n+l)  

= d i m ( d ) -  d im(G)  

We are now in a position to state the main theorem of the paper. 

Theorem 3.9. I f  d and ~ are finite-dimensional, then 

fl: V(d)| V(~)--* V(d~) 

is a vector space isomorphism. 

Proof. Lemma 3.3 and Theorem 3.8. 

Corollary3.10. I f d  and ~ are finite-dimensional, then ~ ( d ~ )  consists 
of  all finite affine combinations 

w=~tihi/zi, tieR, ~ t i=l  

of products hl/zi of  probabili ty weights hi e l~ (d) ,  ~L i ~ ~ ( ~ )  such that 

oJ(xy)----0 for all x e X  and all y e  Y 

Proof. Because V ( d )  is the linear span o f ~ ( d )  and V ( ~ )  is the linear 
span of  1~(~3), it follows that V ( d ) |  V(~3) is the linear span of all pure 
tensors of  the form A |  with h e l~ (d)  and / z  e l~(g3). Consequently, by 
Theorem 3.9, V ( d ~ )  is the linear span of all product  probability weights 
of  the form A/L with h c l - l (d ) , / z  e ~ ( ~ ) .  Thus, w c ~ ( ~ )  can be written 
in the form ~o = ~ t ih i /~  i with hi e ~ (d ) , / z~  c l-l(~).  Applying the dual order 
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unit e ~ V(~4~)* to both sides of  the equation w = Y~ t i h ~  and noting that 
e(A~/x~) = 1, we find that ~ t~ = 1. Since o~ is a probabili ty weight, w(xy)>-0 
holds for all x ~ X, y ~ Y. Conversely, the fact that any ~o of the indicated 
form is a probabili ty weight on ~4Y3 if oo(xy) >_ 0 for all xy ~ X Y  is obvious. 

4. E X A M P L E S - - U N I T A R Y  AND EUCLIDEAN SPACES 

In this section, we consider some of the consequences of  the theory 
developed above for the probability measures associated with finite- 
dimensional Hilbert spaces over C (unitary spaces) or over $ (Euclidean 
spaces). We consider only spaces of  dimension three or more, so that 
Gleason's  theorem applies. I f  ~ is such a Hilbert space, then ~ ( ~ )  denotes 
the vector space of all linear operators on ~ and T'(YC) denotes the real 
vector space of all self-adjoint operators on ~. 

I f  ~ is Euclidean, we define 7/'• to be the real vector space of  all 
skew-adjoint operators on ~. Note that T •  is the orthogonal comple- 
ment of  ~ ( ~ )  with respect to the inner product  

(A,B)=trace(AB*) for A, B e ~ ( Y ( )  

so that, in the Euclidean case, we have 5 ( (~ )  = ~V(Y()0)~ 
For simplicity, we call an operator A c 7/'(Y~) positive if it is positive- 

semidefinite in the sense that (A~b, q,)_> 0 holds for all vectors ~0 ~ ~.  A 
density operator on ~ is a positive operator of  trace one in ~ and the 
convex subset of  ~ consisting of all such density operators is denoted 
by ~W(Y(). Thus, with ~ as a cone base, ~V(Yg) forms a base-norm space. 

The set ~ / o f  all maximal  orthonormal subsets of  Y( is called the frame 
manual of ~.  As mentioned earlier, there is a natural linear isomorphism 
A~->O~A from ~V(Y() onto V(~/) given by 

COA(~0) = trace(AP~) = (A0, ql) 

for all unit vectors qJe Y~, and this isomorphism carries o/g.(N) onto the 
cone base l~(ag) of probabili ty weights in V ( ~ ) .  

Now let Y(l and g2 be finite-dimensional Hilbert spaces, either both 
unitary or both Euclidean. For i = 1, 2 we denote the frame manual  of  
by -ffi. Let Y(= YC1 | ~2 be the Hilbert-space tensor product and let ~ / b e  
the frame manual  of  Y(. There is a natural linear isomorphism 

,=.~ (ff~l) (~) ,~ ( ff~2 ) ~---- ,~ ( o,q~l (~) ,~2 ) 
such that the algebraic tensor product A~| of the operators A1 ~ ~ ( ~ 1 )  
and A2~ ~(Y(2) corresponds to the Kronecker  product of  A1 and A2. In 
what follows, we simply identify A~| with this Kronecker product,  so 
that, for r c Y(1, qJ ~ ;7(2, 

(A, |  | th) = A1 (q~) |  
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In particular, we shall regard T ' (~I) |  as a linear subspace of 
~(~") = ~ (~ , |  ~ ) .  

Note that, if E ~ aClzg2, then {&| c E} ~ ar Therefore, the map- 
ping s~: V ( M ) o  V(M~M2) defined by s~(v)($0)= v(~b| for vc  V(M), 
qbO c U (M~ar is linear and maps the cone base f~(M) in V(M) into the 
cone base f~(M~M2) in V(MI.d2). Hence, by composing the natural linear 
isomorphism A~--~tOA from ~ onto V(M) with ~:, we obtain a linear 
mapping r: T'(~) ~ V(MIM2), denoted by A ~ r A ,  such that 

" / 'A(~ )  = ~(O')a)((~/t) = 0)A((~ | I]/) = (A(~b | 0), qb| 

holds for all A~ ~ and all unit vectors q~ ~ ~x, r ~2. Evidently, r 
maps the cone base W'(~) of T'(~g) into the cone base f~(ag~zr of V(agla42). 

Because T'(~,) -~ V(~/~) for i = 1, 2, it follows from Theorem 3.9 that 

~ | ~(,~2)= V(~,) |  V ( ~ ) =  V(.~,.~9 

In fact, the restriction of r: T ' (~)  + V ( ~ l d 2 )  to the linear subspace T'(~g~) | 
T'(~2) of T'(~) provides just such a linear isomorphism A~--~'rA for A~ 
T ' ( ~ )  | T ' ( ~ ) .  In particular, if A~ ~ ~ A2 ~ ~ A = At|  & 
U a11, and 4, e U ar then we have 

~'~(6~) = (A~b, ~b}(A~_#,, ~} 

If Z~ and ~2 are unitary spaces, then ~ ( ~ ) =  ~174  T'(~2); hence, 
in the unitary case, A~-~ rA provides a linear isomorphism 

~r( :~) = V( ~ ,~2)  

However, in the Euclidean case, 

~(~t) = [ ~ (~ , )  @ ~ ( ~ ) ]  r [ v~(~,)  @ ~.(~.,)]  

and, in this case, T'Z(~l) |  ~• is precisely the null space of the linear 
mapping r: ~ V ( ~ r  Thus, in the Euclidean case, V(aClar is 
isomorphic to a proper subspace of ~V(~). 

Now, we investigate the question of how the various cone bases fare 
under the linear mappings introduced above. Say that an operator A ~ ~ 
is positive on pure tensors (PPT) if 

(A(O|174 

holds for all 0 ~ ~ and all" & ~ ~t~z. Obviously, every positive operator in 
T'(~) is PPT; however, there are simple examples of operators in ~ ( ~ )  
that are PPT, but not positive. Define the convex subset (s of ~ ( ~ )  by 

(~(~) = {C ~ ~ ( ~ ) [ C  is PPT and trace(C) = 1} 
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Note that ~/'(Y() is a proper subset of  cg(y(). Evidently, r maps ~(YC) onto 
the cone base 11(~r Define 

J - (~ )  consists of all PPT operators in ~V(~) that are affine combinations 
of tensor products of density operators on ~ and Y(2. In conformity with 
Corollary 3.10, the restriction of r to J - (~ )  is an affine isomorphism of 
J ( ~ )  onto f~(~1~r Thus, we have the following theorem: 

Theorem 4.1. Let ~ and ~2 be unitary or Euclidean spaces of 
dimensions three or more, and let Y(= Yg~@ ~2- Let ~ ,  -ffz, and ~r be the 
frame manuals of ~1, ~2, and Yg, respectively. Let ~(Y() be the convex set 
of all self-adjoint operators on ~ that are positive on pure tensors and have 
unit trace. Let ~-(Y() denote the convex set consisting of those operators 
in ~ (YC) that are affine combinations of tensor products of density operators 
on YC1 and ~2. Let ~ be the convex set of all density operators on Y(. 
Then ~V(Yg)w 5r(Y()c ~ ( ~ ) ,  and there are affine isomorphisms 

7g(~)  --- f~(.ff) and ~(Yg) --- f~(~Ca~/2) 

provided by the mappings A~'-~o9 a and A~--~ ra, respectively. 

In the unitary case, we have 

and 3-(YC)\~ is nonempty. Thus, all of  the probability measures affili- 
ated with density operators on the tensor product Y(~ | YC2 of unitary spaces 
are represented in the space 12(a/a a/2) of probability weights on the pretensor 
product ~1~2 of the corresponding frame manuals; however, there are 
probability weights in 12(~r that do not correspond to any of the 
probability measures affiliated with density operators on Y(I| The 
probability weights in ~-(~)\Tg(Yg) correspond to the "anomalous states" 
that have caused concern because they seem to assign "negative prob- 
abilities" to certain propositions affiliated with quantum mechanical systems 
(Groenewold, 1985). The formalism set forth in this paper shows how such 
anomalous states can arise, how they can be interpreted, and how they can 
be dealt with mathematically. 

Although the Euclidean case is perhaps not as significant as the unitary 
case from the point of view of orthodox quantum mechanics, it is even 
more interesting than the unitary case from a purely mathematical stand- 
point. In the Euclidean case, c~(YC) is a disjoint union 

<e(~C) = ~-(~0\  W:(~ 0 0  Y ( ~ )  ~ ~r  O ~ ( X ) \ O - ( ~ )  

o %(s163 ~ (s  
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of  four  n o n e m p t y  subsets.  Thus,  for  Eucl idean  spaces NI and ~f2, we not  
only have anomalous  states cor responding  to e lements  in 9 - ( N ) \  o/r  we 
also have,  vice versa,  probabi l i ty  measures  represented by elements  of  
7 / / ' (N) \~ r (~ )  that  have no counterpar ts  in l-l(S~l~2). 

5. T H E  T O T A L L Y  F I N I T E  CASE 

A quas imanua l  s~ is said to be finite if  there are only finitely m a n y  
sets E e s~; locally finite i f  every E e sd is a finite set; and totally finite i f  it 
is bo th  finite and  locally finite. Thus,  ~ is total ly finite if  and only if [._] s~ 
is a finite set. 

Definition 5.1. The set o f  probabi l i ty  weights f~(s~) for the quas imanua l  
s~ is said to be  positive if, for  each x �9 [._.J sr there exists ~o �9 11(~4) such 
that  t o ( x ) >  O. A probabi l i ty  weight to e Ft(sr is said to be  strictly positive 
if  ~o(x) > 0 holds for  every x el._) sO. 

Lemma 5.2. Let the total ly finite quas imanua l  sr have a posi t ive set 
o f  probabi l i ty  weights f l (sr  Then there is a strictly posit ive probabi l i ty  
weight a e f l (sr  

Proof. For  each x e X = L.] sO, select tox �9 l l (s r  such that  tox(x) > O. 
With  n = # X, put  

o 

Lemma 5.3. Let a be a strictly finite probabi l i ty  weight on the total ly 
finite quas imanua l  sO. Let X = [._.J sO, let A e N x  and suppose  that  there exists 
a fixed c e N such that  

A ( x ) =  c for  every E e 
x ~ U  

Then: 
(i) There  exist s, t �9 R with s, t > 0 and there exists to e Ft(s~) such that  

A = sc~ - tto. 
( i i)  A e V ( M ) .  

Proof Because X is finite, there exists s > 0 such that A ( x ) <  so (x )  
holds  for  all x e X. Let/.~ e Nx be defined by/~ = sa  - A, and let t = ~ x~ e ~ (x)  
for  any E e M. Let to = (1/t)/~,  noting that  to �9 f~(sq). This proves  (i), and  
(ii) is an immedia te  consequence.  

I f  M is a totally finite quas imanua l  with a posit ive set l l ( sg)  o f  probabi l -  
ity weights,  then I I (M)  is a po ly tope  in V(M) and the hyperp lane  e-~(1) 
is the affine span  of  f I (M)  ( G u d d e r  et al., 1987); hence,  the affine d imens ion  
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of f}(M) is dim(M) - 1. Conversely, by a theorem of Schultz (1984), every 
rational polytope is of  the form f}(M) for a suitable choice of the totally 
finite quasimanual M. 

Definition 5.4. Let M be a totally finite quasimanual with X = ~_J M. 
The linear transformation T: R x ~ R a defined by 

(T ( tp ) ) (E )=  ~ ~b(x) for @ ~ x ,  E ~ M  
x C E  

is called the incidence transformation for M. The rank of T is called the 
rank of the quasimanual M. 

The matrix (tx,~) for the incidence transformation T with respect to 
the Kronecker bases for R x and R ~ is the incidence matrix for the 
quasimanual M. Evidently, 

(~ if x ~ E  for x ~ X ,  E c M  
tx, E = if x ~ E 

The proof  of the following theorem first appeared in Klfiy (1985). 

Theorem 5.5. Let M be a totally finite quasimanual with a positive set 
of probability weights and let X = ~.J M. Then 

dim(M) = 1 + ~ X - r a n k ( M )  

Proof. By part (ii) of  Lemma 5.3, the null space of T coincides with 
the null space of e; hence, 

dim(M) = dim(V(M)) = 1 + nullity(T) 

= 1 + dim(R x)  - rank(T) 

= 1 + # X  - r ank (M)  

For the remainder of  this section we assume that M and ~ are totally 
finite quasimanuals with X = U M and Y = [._J ~.  We make the standing 
assumption that both M and g3 carry positive sets of probability weights. 
Therefore, by Lemma 5.2, there exist strictly positive probability weights 
a ~ I}(M), /3 ~ f l ( ~ ) ;  hence, the product weight a/3 is a strictly positive 
probability weight in [}(M~3). Likewise, a/3 is a strictly positive probability 
weight in 12(M--~), f~(M---~), and f l ( M x  ~ ) ;  hence, M~, M~, "M~, and 
M x ~ are totally finite quasimanuals carrying positive sets of probability 
weights. 

Theorem 5.6. rank(M x ~ )  = rank(M) �9 rank(5~). 

Proof. The incidence matrix of M x ~ is the Kronecker product of the 
incidence matrices of M and ~.  
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In the following theorem, we use the notations e~ and e~ for the dual 
order units ea ~ V(~r and e~ ~ V(~)* .  

Theorem 5.7. Let U = {& ~ V(~)Xle~ o 6 c V(~r Then U is a vector 
subspace of  V(~3) x and the mapping tit: V(-~-~)~(Rv)  x defined by 
((atr(~))(x))(y)=p(xy) for p~V(-~--~), x ~ X ,  and y ~ Y ,  is a linear 
isomorphism of V(~---~) onto U. 

Proof. Let ~, ~ V(~-~)  and let ~b = ~ (u ) .  We begin by showing that 
& c V(~ )x .  There exist 03, h c f~(~---~) and nonnegative real numbers s and 
t such that v = s03 - th. Also, with the notation of 2.16, o3 = (w~, (xa~)x~s), 
, ~=(h~ ,  (xh)~T) ,  where S = s u p p t o ~  and T = s u p p h ~ .  Thus, for each 
x ~ X n T ,  

&(x) = sw~(x)xw - tX~(x)xh 6 V ( ~ )  

I f  x ~ S \ T ,  then &(x)=s to~(x )x to~V(~) ,  if x E T \ S ,  then ~b(x)= 
-tA~(x)~A ~ V(Y3), and, i fx  ~ X \ ( T u  S), then &(x) = Oc V(~ ) .  Therefore, 
& ~ V ( ~ )  x. Furthermore, 

e~ ( r  = s~o~(x)- th~ (x) 

and it follows that e~ o 4) = sto~ - th~ ~ V(sg). Therefore, ~ ( u )  - r e U. 
Evidently, ~ :  V(~--~)~ U is linear and injective. We complete the 

proof  by showing that it is surjective. Thus, suppose that & e U and define 
p ~ NxY by ~,(xy)= ( r  for all xy e XY.  It is sufficient to prove that 
v e V(~--~), for then, T(~,) = &. Let G e ~ - ~ ,  so that there exists E e ~ and, 
for each x e E, there exists Fx ~ N such that G = Ux~e  xF~. Let 

c =  E ~,(xy)= y. (~b(x))(y) 
x y ~  x y e G  

By Lemma 5.3, it is enough to show that c is independent of  the choice of  
G ~ - ~ .  Because 4 ~  U, we have &(x)~ V ( ~ )  for every x ~ X ;  hence, 

c =  Y~ x y ~  (~b(x))(y) = ~ ~ [~Fx Y ( r  ~ 

= Z (e~ o r  = e~(e~ o ~)  
xGE 

where, in the last step of the computation, we have used the fact that 
e~ o r e V(~r 

Theorem 5.8. d i m ( ~ )  = dim(sr + [d im(G)  - 1 ] (#X) .  

Proof. Let U be defined as in Theorem 5.7, noting that d im(U)  = 
dim(~--~). Define L : V ( ~ ) x ~  x by L ( & ) = e ~ o &  for r  x. 
Evidently, L is linear and U =  L-I(v(s~)) .  We claim that L: V ( ~ )  x _ ~ x  
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is surjective. Indeed, let ~b ~ R x and, for each x ~ X, select/3x ~ V(N) such 
that e~( f lx )  = 0(x).  [This is possible because the nonzero linear functional 
e~: V(N) - R is surjective.] Define q5 ~ V ( N )  x by th(x) = fix for each x ~ X. 
Then, for x ~ X, 

(L(4~))(x) = (e~ o 4~)(x) = e~(cb (x ) )  = e~(13x) = O ( x )  

Hence, L(~b) = 0. Let A ~  V ( N )  x be the null space of  L and let A c  V ( ~ )  
be the null space of e~. Evidently, A = AX; hence, 

dim(A) = [d im(V(N))  - 1](~ X)  = [dim(N) - 1 ] (~X)  

Because A is a linear subspace of U =  L - I ( V ( M ) ) ,  we have d i m ( U ) =  
dim( U/A)+d im(A) ;  hence, it suffices to prove that d i m ( U / A ) =  dim(M). 
However, because L: V ( N )  x ~ R  x is surjective and V(M) is a linear sub- 
space of  R x, 

U / A  = L - I (  V ( M ) ) /  L - ' ( O )  = V ( M )  

and, therefore, d im(U/A)  = dim(V(M)) = dim(M). 

Corollary 5.9. dim(~--~) = d im(N)+[d im(M)  - 1](# Y). 

Theorem 5.10. dim(M x N ) + dim(MN ) = dim(~-~)  + dim(~---~). 

Proof.  Let a = d i m ( M ) ,  b = d i m ( N ) ,  ra =rank(M),  rb=rank(N) ,  x =  
#X,  and y = :~ Y. By Theorem 5.5, 

ra = l + x - a and rb = l + y -- b 

Thus, by Theorems 5.5 and 5.6, 

dim(M x N) = 1 + 4 ~ ( X Y )  - rank(M x N) = 1 + x y  - tar b 

= l + x y - ( l + x - a ) ( l + y - b )  

= a + ( b - 1 ) x + b + ( a - 1 ) y - a b  

Therefore, by Theorem 3.8, Theorem 5.8, and Corollary 5.9, 

dim(M x N) + dim(MN) = dim(~--~) + dim(~-~)  

L e m m a  5.11. V ( M ~ ) =  V ( ~ - ~ ) n  V(~---~). 

P r o o f  This result is an immediate consequence of  Lemma 5.3, 
Definition 2.17, and the fact that ~ - ~  c~ ~ is nonempty. 

Because M x N ___ ~---~, it follows that f~(~--~) ~ f~(M x N); hence, that 
V(~--~) ~ V(M x N). Likewise, V(~--~) ~ V(M x N),  and it follows that, as 
subspaces of R xY V(~--~)+ V(~---~)_ V(M x N). Actually, this inclusion 
can be strengthened to an equality. 
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Theorem 5.12. V(--~-~) + V(~--~) = V( ~I • ~3 ) 

Proof  By L e m m a  5.11 and  Theorem 5.10, we have 

d i m ( V ( ~ - ~ )  + V(~--~))  

= d i m ( V ( ~ ) )  + d im(V(~- -~ ) )  - d i m ( V ( ~ )  c~ V(~--~))  

= d i m ( V ( ~ - ~ ) )  + d im(V(~- -~ ) )  - d im(V(~Y3) )  

= d im(  V(~r x ~ ) )  

The theo rem now fol lows f rom the fact that  

V ( ~ ' )  + V(~-~) _ V ( ~  x ~ )  

Corollary 5.13. Let to �9 R xY. Then to �9 YI (~ /x  @ ) i f  and only i f  to (xy) z 0 
for  all  xy  �9 X Y  and  there  exist  o3 �9 f ~ ( ~ ' ) ,  o3 �9 l~(~--~),  and  t e R such that  
to = to~ + (1 - t)aS. 

Proof  It  is c lear  that  any  w �9 R x r  that  satisfies the given cond i t ions  is 
a p robab i l i t y  weight  on ~r x ~ .  Converse ly ,  let to �9 f l ( s r  • Y3). Then,  to(xy) >- 
0 holds  for  all x y e X Y .  Fur the rmore ,  by  The o re m 5.12, we can wri te  
to = u +/~ with u �9 V(~--~),  t~ �9 V(~---~). Select  a str ict ly posi t ive  p robab i l i t y  
weight  a �9 I-I(~/Y3), no t ing  that  a is au toma t i ca l ly  a strictly posi t ive  p robab i l -  
i ty weight  in bo th  l ' l ( ~ - ~ )  and  ll(~---~). B y  L e m m a  5.3, there  exist  p, q > 0 
and  there  exists ~ �9 12(~-~)  such that  l, = p a  - q~. Likewise,  there  exist  
u, v > 0 and  there  exists o5 �9 (I(~/Y3) such t h a t / ~  -- u s  - vo3. It  fol lows that  

w = ( p + u ) a - q ~ - v ~  

Let E �9 ~ ,  F e ~ ,  and  sum bo th  sides o f  the la t ter  equa t ion  over  all xy  �9 E F  
to conc lude  that  1 -- p + u - q - v. Hence ,  

to = ( l + q + v ) c ~ - q ~ - v ~  

N o w  define 

l + q + v  q 1 v 
o3 - - ~ -  ~ - -  ,o+ o~ 

l + v  l + v  l + v  l + v  

not ing  that ,  on the one  hand ,  o3 �9 V(~--~),  and ,  on the o ther  hand ,  o3 �9 
Yl(~r x ~ ) .  Because  o3 �9 ~ (~ r  x ~3), it fol lows that  o3(xy) > 0 for  all  xy  �9 X Y .  
Also,  o3(xy) sums to 1 as we run xy t h rough  any ope ra t ion  E F e , f f x ~ 3 .  
Since E F  �9 ~ ,  it fol lows f rom the fact tha t  03 �9 V(~---~) that  o3 �9 Y~(~---~). 
Fu r the rmore ,  with t = 1 + v, we have to3 = to + voS, so that  

to = to~ + ( -v)o5  = to~ + ( 1  - t)t5 
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